Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.

نویسندگان

  • Carolyn R Mason
  • Claudia M Hendrix
  • Timothy J Ebner
چکیده

The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was recorded as two rhesus monkeys reached and grasped 16 objects. The objects varied systematically in volume, shape, and orientation and each was grasped at five different force levels. Linear multiple regression analyses showed the simple spike discharge was significantly modulated in relation to objects and force levels. Object related modulation occurred preferentially during reach or early in the grasp and was linearly related to grasp aperture. The simple spike discharge was positively correlated with grasp force during both the reach and the grasp. There was no significant interaction between object and grasp force modulation, supporting previous kinematic findings that grasp kinematics and force are signaled independently. Singular value decomposition (SVD) was used to quantify the temporal patterns in the simple spike discharge. Most cells had a predominant discharge pattern that remained relatively constant across object grasp dimensions and force levels. A single predominant simple spike discharge pattern that spans reach and grasp and accounts for most of the variation (>60%) is consistent with the concept that the cerebellum is involved with synergies underlying prehension. Therefore Purkinje cells are involved with the signaling of prehension, providing independent signals for hand shaping and grasp force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object.

Understanding how the CNS controls reach-to-grasp will require behavioral and neurophysiological studies of reach-to-grasp in the monkey, including the evaluation of whole-hand grasp with explicit force requirements. In this study, monkeys performed a reach-to-grasp task in which the size, shape, and orientation of the objects were varied. The monkeys were required to grasp each object at five ...

متن کامل

Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey.

A fundamental question is how the CNS controls the hand with its many degrees of freedom. Several motor cortical areas, including the dorsal premotor cortex (PMd) and primary motor cortex (M1), are involved in reach to grasp. Although neurons in PMd are known to modulate in relation to the type of grasp and neurons in M1 in relation to grasp force and finger movements, whether specific paramete...

متن کامل

The Effects of Grasp Conditions on Maximal Acceptable Combined Forces (pushing and pinch forces) for Manual Insertion of Snap Fasteners

The objective of this study was to determine the effects of grasp conditions (types of grasp, grasp width, glove and types of coupling) on maximal pushing force (MPF) and required pinch force (RPF) during snap fit assembly. The results indicated that the type of grasp, the type of coupling and wearing gloves have significant (p

متن کامل

Study of the effect of hand-arm vibration on hand grip strength

Introduction: Musculoskeletal injuries are one of the most common causes of work-related illnes, reimbursement and absence among workers in working environments throughout the world. Among various factors, exposure to vibration is one of the main causes of these injuries. The aim of this study was to investigate the effect of key factors on the occurrence and exacerbation of the effects of expo...

متن کامل

Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque.

In humans, the caudal pole of the superior parietal lobule is involved in the control of both reaching and grasping movements, whereas in monkey it is reported to be involved only in the control of reaching. Using single-unit recordings from trained macaque monkeys, we investigated whether area V6A, a visuomotor area located in the caudal part of the posterior parietal cortex, is involved in bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2006